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APPROXIMATE MODELS OF EXHAUSTION OF

A SUPERSONIC GAS JET INTO VACUUM

UDC 532.525.2:533.697.4V. A. Shuvalov, O. A. Levkovich, and G. S. Kochubei

Approximate models for calculation of gas-dynamic parameters of supersonic jets escaping into
vacuum are proposed. It is shown that the structural description and the spatial distribution of
the parameters in the far field of the jet in the ideal and viscous approximations are in good
agreement with the results of physical experiments and numerical solution of the problem.

The problem of the structure of a supersonic gas jet escaping into vacuum has various technological
applications [1, 2]. The problem is usually solved numerically by the method of characteristics. Obtaining of
such a solution is rather labor-consuming; therefore, approximate models are frequently used in engineering
practice [1, 2]. These models have different degrees of correspondence to numerical and physical experiments
but do not take into account viscous effects. Because of the boundary layer in the nozzle, the gas density in
the peripheral part of the jet is significantly greater than the density calculated for the case of an inviscid
(ideal) flow. The gas parameters at the jet periphery are used to determine the action of gas jets on various
constructual elements of energy facilities, vacuum pumps, spacecraft surfaces, and other technical systems.

Viscous effects are taken into account in the model proposed in [3]. The accuracy of this model is
determined to a large extent by an appropriate choice of the parameter mz (the ratio of the gas discharge in
the boundary layer to the total discharge of the gas) based on the results of a physical experiment or numerical
analysis of the gas flow in the nozzle.

In the present paper, we propose two refined models, which allow one to increase the calculation
accuracy of the parameters of a supersonic jet escaping from real nozzles into vacuum. The area of applicability
of these approximate models is the far field (according to the estimates of [4], from r/re > 10, i.e., downstream
of the boundary of continuity [5]), where the gas velocity in the jet increases and approaches the limiting value
Vmax =

√
2γRT0/(γ − 1), and the streamlines are almost rectilinear. Here γ is the ratio of specific heats, R is

the universal gas constant, T0 is the stagnation temperature, r is the jet radius, and re is the nozzle-exit radius.
As in [3], we assume that the far field of the jet may be simulated by a source with a pole at the center of the
nozzle, the main mass of the gas and jet momentum are concentrated in the central core, where the gas flow
is perfect, and viscous effects are manifested in the peripheral region. The results of the numerical solution
of the problem or the data of a physical experiment may be used as a criterion of accuracy of approximate
models.

In a polar system of coordinates with the origin at the center of the nozzle-exit cross section, the
gas-density distribution in the far field of an axisymmetric supersonic jet may be represented in the following
form (model No. 1):
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Here k = γ(γ− 1)M2
e (Me is the Mach number at the nozzle exit) and θ is the angle between the radius-vector

of the considered point of the jet and its centerline,
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CF is the thrust coefficient of a real nozzle, CF max is the thrust coefficient for inviscid exhaustion of the jet
into vacuum, Ccon is the conicity coefficient of the nozzle, Cd is the discharge coefficient, CV is the velocity
coefficient, and β∗ = β for Ae/A∗ = 1 (Ae is the cross-sectional area of the nozzle exit and A∗ is the area of
the nozzle throat). In an inviscid flow, we have CF /CF,max = 1 and mz = 0.

Kuluva and Hosack [6] obtained the following relation for the discharge coefficient Cd:

Cd = 1−
( rc

r∗

)0.25 0.97 + 0.86γ√
Re∗

. (2)

Here 0 6 rc/r∗ 6 2, 50 < Re∗ < 105, rc is the curvature radius of the profile in the nozzle-throat cross section,
r∗ is the radius of the nozzle-throat cross section, and Re∗ is the Reynolds number in the nozzle-throat cross
section.

In [7], the discharge coefficient is represented as the approximation

Cd = 0.998− 2δ∗/r∗, (3)

where δ∗ is the displacement thickness.
For real nozzles, the velocity coefficient is determined by the relation [8]

CV =
(1− Te/T0)0.5√
k/(k + 2γ)

(4)

(Te is the flow temperature at the nozzle exit). In the adiabatic flow regime, we have

CV =
√

1 +
2
γ

(Cd − 1). (5)

Figure 1 shows the measured and calculated values of Cd (curve 1 and points 2–5) and Te/T0 (points 6
and 7, respectively) for 10−1 6 Re∗ 6 106 and γ = 1.4. Curve 1 refers to the averaged data of the experiment
[9], points 2 to the data of [10], 3 to the calculation of [11], 4 to approximation (2) for rc/r∗ = 1.5, 5 to
approximation (3) for the data of [12], 6 to the data of [10], and 7 to the data of [12] for a conical nozzle with
an expansion Ae/A∗ = 100 and inclination of the nozzle exit to its axis θe = 15◦ (T0 = 1100 K, and γ = 1.37).
The measurements and calculations performed in a wide range of stagnation parameters for different conditions
of gas-jet exhaustion from nozzles may be used to evaluate the coefficients Cd and CV . Taking into account
the numerical data of [10, 13], approximations (2)–(5), in fact, determine the areas of applicability of model
No. 1: Me > 1 (1 6 Ae/A∗ 6 103) and 50 6 Re∗ 6 106. The density distribution across the jet (with
respect to the axis of symmetry) in the far field is almost independent of r and is determined by the ratio
ρ/ρa = ρ(r, θ)/ρ(r, 0).

If the characteristics of real nozzles (coefficients Cd and CV ) are unknown, the jet parameters in the
far field can be determined using model No. 2:
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Fig. 1
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The correctness of model Nos. 1 and 2 is illustrated in Fig. 2, which shows the angular distributions of
density ρ(r, θ)/ρ(r, 0) = ρ/ρa for a supersonic gas jet escaping from a real nozzle into vacuum.
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corresponds to model No. 1, and the next relation corresponds to model No. 2:
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Figure 2a shows the density distribution in the jet cross section r/re = 70 for Me = 6.9, θe = 15◦, and
γ = 1.4. Points 1 correspond to the numerical solution of the problem by the method of characteristics for
a viscous flow [3]; curve 2 refers to the values calculated by Eq. (7) for Cd = 0.989 and CV = 0.981. The
values of Cd and CV are determined for conditions of hydrazine exhaustion from a conical nozzle for θe = 15◦,
Ae/A∗ = 100, T0 = 1100 K, and Re∗ ≈ 5.9 · 104 [8, 12]. Curve 3 shows the results obtained by model No. 2
[relation (8) for a viscous flow], curve 4 refers to the results obtained by the model proposed in [3], and curve 5
corresponds to the results obtained by model No. 2 [relation (8) for an ideal flow for mz2 = 0].

Figure 2b shows the angular distribution of the normalized density of the gas in the far field of a
supersonic jet escaping into vacuum for Me = 4.5, θe = 15◦, and γ = 1.4. Points 1 correspond to the
experimental data of [1] for Re∗ = 6.5 · 104 and r/re > 10, curve 2 refers to the results obtained by model
No. 1 [Eq. (7)], curve 3 was obtained by approximation (8), and curve 4 was plotted using Eq. (8) for an
inviscid approximation for mz2 = 0.
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Fig. 2

Fig. 3

A comparison of numerical data for an inviscid flow, which were obtained by the method of character-
istics [14] for Me = 5.0, γ = 1.4, θ = 15◦, and r/re = 78 (Fig. 2c), with the calculation results by Eqs. (7)
and (8) shows that the angular distributions of the gas density are adequately described by model Nos. 1
and 2 in the case of ideal exhaustion. Points 1 in Fig. 2c correspond to the calculations by the method of
characteristics [14], curve 2 is plotted by Eq. (8) for mz2 = 0, curve 3 is plotted by the model of inviscid
exhaustion [15]

ρ(r, θ)
ρ0

= 0.5k
(

1 +
k

2γ

)−1/(γ−1)( r
re

)−2

(cos θ)k, (9)

and curve 4 is plotted for mz = 0 using the model proposed in [3].
The gas-density distributions obtained by model Nos. 1 and 2 are closer to the calculation results by

the method of characteristics and the physical experiment than those obtained using the model proposed in [3].
This is illustrated by the data for angular distributions of density in Fig. 2 and axial distributions of density
ρa = ρ(r, 0) in Fig. 3.

In Fig. 3, points 1 correspond to the results of the numerical solution of the problem by the method of
characteristics for a viscous flow for Me = 6.9, θe = 15◦, and γ = 1.4, which were obtained in [3], curve 2 refers
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to the results obtained by model No. 1, curve 3 shows the results obtained by model No. 2, and curve 4 refers
to the results obtained by the model proposed in [3] for mz = 0.07 (curves 2 and 3 almost coincide). Similar
dependences for an inviscid flow for Me = 5.0, γ = 1.4, θ = 15◦, and 10 6 r/re 6 250, which were obtained by
the method of characteristics [14], by model No. 2 for mz2 = 0, and by approximation (9), are also in good
agreement. Viscous effects in the case of supersonic exhaustion of a gas into vacuum are manifested in the
peripheral part of the jet for θ > 40◦ and ρ/ρa < 10−2 (curve 5 in Fig. 2a and curve 4 in Fig. 2b). In the
axial region (θ 6 40◦), the solutions for the viscid and inviscid flows almost coincide. The main mass of the
gas expands inside the cone whose half-angle is smaller than 0.5θmax. The limiting angle of jet expansion is
determined by the relation θmax = ψ(M)− ψ(Me) + θe, M =∞, where ψ(M) is the Prandtl–Mayer function.
The influence of the angle θe on the Mach number distribution on the jet axis and in its vicinity is mainly
manifested near the nozzle exit and becomes insignificant further downstream [1, 2]. Therefore, for the axial
distribution of Mach numbers, we can use the relation
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The values of M(x)/Me obtained by Eq. (10) for Me = 5.0 and γ = 1.4 correspond to the numeri-
cal solution of the problem by the method of characteristics [14] with an error of less than the streamwise
distribution of density ρa (r = x and θ = 0) obtained by formulas (1) and (6).

In the case of gas exhaustion into vacuum, the flow regime in the jet varies from continuum to free-
molecular. Based on the above considerations, the boundary of flow continuity in the axial zone may be found
by the formula [16]
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where l0 and ρ0 are the mean free path and the gas density upstream of the nozzle, respectively, N = ν(γ−1),
ν = 2(1− ω), and ω is the power index in the viscosity versus temperature dependence.

Taking into account relations (11), one can use the approximate models proposed to predict the spatial
distribution of the gas density and Mach numbers in the far field (r/re > rbound/re) of a supersonic jet with
viscid and inviscid exhaustion into vacuum with an accuracy corresponding to the numerical solution of the
problem by the method of characteristics and to determine the force and thermal action of the jets on targets.
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